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Over the past ten years, our group has investigated the effects of confinement on
atoms inside metallic micron-sized cavities in order to elucidate some basic phenom-
ena in the field of cavity quantum electrodynamics (QED). The first of these was the
inhibition of spontaneous emission from an atom inside a cavity. This was followed by
a laser spectroscopic measurement of the van der Waals interaction between a single
Rydberg atom and a gold cavity, which showed that a simple electrostatic model of
the atom–cavity interaction is correct when the cavity is small enough. More recent-
ly, the retarded Casimir–Polder force was measured between a ground state sodium
atom and a large cavity, demonstrating that the van der Waals potential fails at long
enough range and that the vacuum fluctuations of the field then have an important
role in the interaction of the atom with the cavity. Our group is now pushing forward
these investigations to study cavities whose walls have losses and dispersion, where
the theory of cavity QED is significantly more complicated. With real surfaces, we
have to deal with the complex dielectric response ε(ω) of the material, which exhibits
frequency-dependent absorption and dispersion. One particularly interesting case is
when a downward transition in the atom is resonant with an excitation of the cavity
walls. This opens a new branch for the atomic decay: as an alternative to creating a
photon within the space surrounded by the cavity walls the atomic decay can now
create an electromagnetic excitation of the walls themselves. Another novel feature
of our experiments is that the Bohr frequencies of the atom are close to the kT/h,
where T is room temperature. We therefore expect to be able to measure effects asso-
ciated with QED at finite temperature; in other words, to study how the blackbody
radiation affects our experiments. By conducting experiments with real surfaces, we
hope to elucidate and perhaps simplify the theoretical models used to describe these
systems.

1. Introduction

Charged particles are inescapably coupled to the electromagnetic radiation field.
Even in a vacuum, an atom is perturbed by electromagnetic quantum noise (vacuum
fluctuations) and this coupling is responsible for some basic phenomena such as the
Lamb shift and spontaneous radiative decay. These radiative effects can be calculated
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using quantum electrodynamics (QED) and for cases when the atom is in free space,
remarkable agreement has been found between theory and experiment. If the atom
is in the vicinity of conducting or dielectric material, the electromagnetic field is
perturbed and the radiative properties of the atom can sometimes be substantially
modified. This area of physics—the study of electromagnetic fields restricted to a
space with boundaries and the radiative properties of atoms in such a field—is called
cavity quantum electrodynamics. Inside a cavity or waveguide, the spectrum of the
electromagnetic field modes is strongly modified for wavelengths that are comparable
with, or longer than, the physical dimensions. Thus, it is possible by a suitable choice
of cavity geometry to change the spectrum and spatial distribution of electromagnetic
quantum noise in a well-defined way and hence control both the Lamb shift and
spontaneous decay rate. The possibility of modifying spontaneous emission rates
was first mentioned by Purcell (1946). A detailed cavity QED calculation of the force
between an atom and a conducting plate was made by Casimir & Polder (1948) and
was soon extended (Casimir 1948) to the force between two conducting plates. There
followed a large number of papers, nearly all theoretical, concerning the radiative
rates and level shifts of atoms near conducting surfaces. There have also been a few
experiments which have now demonstrated the existence of all the basic cavity QED
phenomena predicted for perfect metallic cavities (see, for example, the review article
by Hinds (1994), the book edited by Berman (1994) and the recent experiment by
Lamoreaux (1997)).

Our group, previously at Yale University and now at Sussex, has studied the
inhibition of spontaneous emission in a metallic cavity. We have also measured the
dispersive (non-resonant) coupling between an atom and a cavity in two limiting
cases: the short-range, non-retarded van der Waals interaction (Sandoghdar 1992)
and the long-range, retarded Casimir–Polder interaction (Sukenik et al. 1993). The
next section is an account of these experiments in (almost) perfect metallic cavities.
It is followed in §3 by a discussion of near-field cavity QED with imperfect surfaces
that exhibit absorption and dispersion. In §4 we look at spontaneous emission near
several real surfaces and show that Rydberg atoms can be strongly coupled to ionic
crystals through their surface polariton modes. In §5 we see how the energy levels
of an atom close to such a surface are perturbed by the coupling to the surface
resonance; and finally in §6 we discuss the implications of finite temperature, since
hitherto we have assumed T = 0 K.

2. Cavity QED with perfect conductors

The apparatus we are using varies from one experiment to another, but the basic
ingredients, shown in figure 1, are an effusive beam of alkali atoms (Na, Rb or Cs)
and a parallel-plate cavity a few millimetres long and roughly 1 µm wide, formed by
two rectangular metal or dielectric mirrors. The atoms can be excited, by means of
two lasers, to a Rydberg level (typically n = 10–30) which is then field ionized and
counted using a channel electron multiplier. The lasers can be positioned to excite
the atoms before entering the cavity, within the cavity, or after leaving the cavity,
depending on the experiment. Inside the parallel-plate microcavity, the fluctuations
of the quantized radiation field are strongly modified for wavelengths comparable
with the plate spacing. This changes both the spontaneous emission rate of an excited
atom and the self energy of an atomic level. Since the energy level shifts are position
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Figure 1. Schematic diagram of experimental set-up. A beam of alkali atoms passes through a
parallel plate waveguide, which is coated with the surface of interest. Two laser beams (wave-
lengths λ1 and λ2) promote the atom by stepwise excitation to a Rydberg level which is detected
by field ionization in front of a channel electron multiplier. Each laser beam can be positioned
before, inside, or after the waveguide to allow studies of lifetime, level shift or deflection.

dependent, there are also forces between the atom and the cavity walls; these are the
van der Waals and Casimir–Polder forces.

Although the idea of modified spontaneous emission is an old one, it was not
demonstrated in a quantum system until Drexhage (1974) showed that the fluores-
cence from dye molecules is modified when they are placed near a surface. More
recently, it became possible to control the spontaneous emission from single atoms
coupled to well-defined cavities and, for example, to induce a strong anisotropy as
demonstrated by our group (Jhe et al. 1987). In that experiment, we suppressed the
spontaneous decay of caesium atoms from 5D5/2 to 6P3/2 at 3.49 µm by placing them
between parallel plates 1.1 µm apart. The radiation field is unable to propagate in
this parallel-plate waveguide when the electric field is parallel to the walls because
the wavelength is longer than twice the plate spacing: the frequency is below the
waveguide cut-off. Consequently, the excited atoms are unable to radiate with this
polarization. In our experiment, the caesium atoms from the oven were prepared in
the 5D5/2 (F = 4, 5 and 6) state by laser excitation before entering a gold coated
parallel-plate cavity 1.1 µm wide and 8 mm long. Their flight through the cavity
lasted 13 natural lifetimes, but even so a significant fraction of them emerged still in
the 5D5/2 state, as shown in figure 2. These were the atoms in F = 6, mF ± 6, which
can only decay by emitting photons polarized parallel to the mirrors. The other mF

sublevels decayed rapidly indicating a strong anisotropy of the vacuum field in the
waveguide.

The idea that the cavity also affects the self energy of an atom is also rather old
(Casimir & Polder 1948) and similarly escaped experimental verification for many
years until Heinzen & Field (1987) saw the resonance line of barium shift when
the atoms were coupled to a resonant cavity. This effect can be viewed as just the
frequency pulling that occurs whenever two oscillators are coupled to each other; the
interesting point is that one of the oscillators is a single atom. Our group measured
the non-resonant coupling between an atom and a cavity in two limiting cases: the
short-range, non-retarded van der Waals interaction (Sandoghdar et al. 1992) and
the long-range retarded Casimir–Polder interaction (Sukenik et al. 1993).

If an atom in state |a〉 is sufficiently close to a plane perfectly conducting mirror,
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Figure 2. Spectra of the Cs(5D5/2 → 26F) transition taken from Jhe et al. (1987). (a) With
atoms excited to the 5D5/2 state after leaving the cavity. (b) With atoms excited to the 5D5/2
state before entering the cavity. Labels 1, 2 and 3 correspond to the 5D5/2 F = 4, 5 and 6
hyperfine levels, respectively. The strong enhancement of the F = 6 peak relative to the others
in their spectrum demonstrates the inhibition of decay from the mF = ±6 levels as a result of
the waveguide cut-off.

the van der Waals interaction energy is given by the simple Lennard–Jones formula

∆vdW = − 1
4πε0

〈a|d2
ρ + 2d2

z|a〉
16z3 , (2.1)

where dρ and dz are the components of the atomic dipole moment parallel and per-
pendicular to the surface of the mirror. This can be understood as the self-interaction
between the fluctuating dipole moment of the atom and its instantaneous images in
the cavity walls. For the parallel-plate geometry which we have in our experiment,
we need to sum over all the image dipoles, resulting in a van der Waals shift at the
centre of a cavity of width L given by

∆vdW = − ζ(3)
4πε0

〈a|3d2
ρ + 8d2

z|a〉
4L3 , (2.2)

where the Riemann zeta function ζ(3) is approximately 1.2. This instantaneous van
der Waals limit is valid as long as the time it takes the electromagnetic field to prop-
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Figure 3. Dots show measured energy level shifts versus waveguide width L for sodium atoms
midway between gold plates (from Sandoghdar et al. 1992). The four series (a)–(d) correspond to
states 13S–10S, respectively. Lines show shifts calculated using the instantaneous van der Waals
potentials of equation (2.2). The agreement with experiment shows that the simple model is a
good approximation when the waveguide spacing is small.
Figure 4. Opacity of parallel-plate gold waveguide for ground state sodium atom versus plate
spacing taken from Sukenik et al. (1993). Opacity is defined as I(6 µm)/I(L), where I(L) is the
intensity of the transmitted atomic beam as a function of spacing L. Curves show theoretical
opacities for various assumed atom–cavity interaction potentials. (a) QED interaction (equa-
tion (2.3)); (b) van der Waals interaction (equation (2.2)); (c) no interaction. The experiment
clearly supports the QED potential which is mainly in the fully retarded Casimir–Polder regime.

agate from the atom to the mirror and back is much shorter than the characteristic
fluctuation time of the electric dipole moment, which means that the wavelengths of
the strong dipole transitions must be much larger than the atom–mirror distance.

The experiment was performed on sodium Rydberg atoms (n = 10, 11, 12, 13)
whose strong dipole transitions have wavelengths of order 100 µm, certainly much
larger than the mirror spacing of a few µm. The interaction energy was measured by
exciting atoms inside and outside the cavity and comparing the excitation spectra
to determine the shift. By varying the gap width (L) of the waveguide and doing the
experiment on states of different quantum number n, the van der Waals energy shift
was verified, including the 1/L3 and 〈d2〉 dependence as shown in figure 3.

At the other extreme, when the atom is much further from the surface than its
characteristic wavelengths, the interaction is no longer a near-field effect and quan-
tum fluctuations of the field become important. The theoretical problem of an atom
between parallel plates has been analysed quite fully (for an excellent recent account
see Barton (1987a,b)). In general, the position-dependent atom–cavity interaction
potential is quite complicated to write down explicitly. For a spherical atom in ground
state |g〉, the following form is more appealing than most:

∆QED = −
∑
e

π〈e|d|g〉|2
6ε0L3

∫ ∞
0

dρ
ρ2 cosh(2πρz/L)

sinh(πρ)
tan−1

(
ρλeg
2L

)
, (2.3)

where z is the distance of the atom from the cavity centre, L is the waveguide
spacing and λeg is the wavelength of the e–g transition. For the case when λeg � L,
we recover the van der Waals limit given in equation (2.2). At the opposite extreme,
the regime of Casimir & Polder when λeg � L, equation (2.3) is well approximated
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by the Casimir–Polder potential

∆ECP = − 1
4πε0

π3~cαstat

L4

(
3− 2 cos2(πz/L)

8 cos4(πz/L)

)
. (2.4)

where αstat is the scalar static electric polarizability, defined as
2
3

∑
e

|〈g|d|e〉|2/(Ee − Eg),

and Ee and Eg are the energies of the unperturbed atomic states |e〉 and |g〉. This
energy shift is most naturally understood as a change in the Lamb shift resulting
from the modified vacuum fluctuations in the presence of the cavity.

In our experiment we studied the deflection of ground state sodium atoms pass-
ing through our micron-sized parallel-plate cavity by measuring the intensity of the
transmitted ground state sodium atomic beam as a function of the cavity width. The
expected transmission through the long narrow channel, or more precisely its inverse,
the ‘opacity’, is plotted in figure 4 for the cases of Casimir–Polder potential (a), van
der Waals potential (b), and no potential (c). The experimental results verified that
the Casimir–Polder potential predicted by QED is the correct one.

In all the experiments above, the cavity walls could be regarded as simple
frequency-independent boundary conditions because they were very good conduc-
tors. Now we are investigating cavities made with dielectric surfaces which are not
so simple.

3. Cavity QED with imperfect surfaces

Let us recall that in electrostatics the effect of a thick slab of material on a charge
q at distance z from its surface can be modelled by placing a fictitious image charge
−q(ε − 1)/(ε + 1) at −z, where ε is the static dielectric constant of the material.
Similarly, the effect of a dielectric half-space on an electric dipole d is equivalent
to an image dipole whose components parallel and perpendicular to the surface are
dimage
ρ = −(ε − 1)/(ε + 1)dimage

ρ and dimage
z = (ε − 1)/(ε + 1)dimage

z . Hence the van
der Waals energy shift of an atom in front of a dielectric surface, derived from the
instantaneous dipole–dipole interaction, is given by

∆EvdW = −ε− 1
ε+ 1

〈a|d2
ρ + 2d2

z|a〉
64πε0z3 . (3.1)

The case of a perfect mirror, equation (2.1), is recovered in the limit of large ε. This
simple model assumes that the dielectric constant ε is frequency independent but,
of course, the real world is much more interesting than that; the dielectric constant
depends on frequency because of resonances in the medium.

A more general formula for the van der Waals interaction between an atom and a
half-space with dielectric function ε(ω) was derived by McLachlan (1963):

∆Edispersion = − 1
4πε0

1
16z3

2
π

∫ ∞
0

dξ
(
ε(iξ)− 1
ε(iξ) + 1

)∑
n

ωna
ω2
na + ξ2 [|dnaρ |2 + 2|dnaz |2],

(3.2)
where ωna is the atomic transition frequency (En−Ea)/~ and dnaρ,z ≡ 〈n|dρ,z|a〉. The
appearance of imaginary frequencies in this formula is at first sight surprising but the
advantage of this form is that (ε(iξ)−1)/(ε(iξ)+1) is real, decreasing monotonically
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from a positive value at ξ = 0 to zero at ξ = ∞ (Landau & Lifshitz 1980) so the
integral is well behaved. For an almost-perfect mirror ε(iξ)� 1 up to frequencies far
above the relevant atomic ones. In that case, we can recover equation (2.1), provided
the atom is in its ground state, by making use of the identities

2
π

∫ ∞
0

dξ
ωna

ω2
na + ξ2 = sgn(ωna) and

∑
n

|n〉〈n| = 1.

For an excited state |a〉, there is another term in the energy which we have not
considered until now. This has been worked out by several authors (for example,
Wylie & Sipe 1985), who find that

∆Eresonant = − 1
4πε0

1
16z3

∑
n

2 Re
(
ε(ωan)− 1
ε(ωan) + 1

)
[|dnaρ |2 + 2|dnaz |2]Θ(ωan). (3.3)

The Θ function means that only lower-lying states n contribute to the sum. Unlike
the van der Waals interaction, which is a non-resonant effect, this interaction is due
to the resonant emission and reabsorption of a photon of frequency ω = ωan; in
second-order perturbation theory, it corresponds to the terms in which the energy
denominator is zero. This interaction is precisely analogous to the frequency shift of
a classical oscillating dipole interacting with the in-phase part of its own reflected
radiation field as discussed at some length by Hinds (1994). The total van der Waals
shift of the atom is given by the sum of equations (3.2) and (3.3),

∆EvdW = ∆Edispersion + ∆Eresonant. (3.4)

When the mirror is a good reflector (ε(iξ) � 1), it is easy to show the rather
marvellous result that equation (3.4) becomes nothing more than equation (2.1); the
ground and excited state shifts follow the same simple Lennard–Jones formula.

The change in the spontaneous emission rate of the atom due to the presence of the
surface is closely related to the resonant shift given in equation (3.3); in fact, they are
the real and imaginary parts of the same coupling since the change in spontaneous
emission is caused by the dipole interacting with the out of phase part of its own
reflected field. Thus the change in decay rate for excited state |a〉 is

∆Γ =
1

4πε0

1
16z3

∑
n

4
~

Im
(
ε(ωan)− 1
ε(ωan) + 1

)
[|dnaρ |2 + 2|dnaz |2]Θ(ωan). (3.5)

The results we have collected here in equations (3.2)–(3.5) describe the changes
in energy and spontaneous emission rate when an atom is placed sufficiently close
to a thick slab of material. Here ‘close’ means that for every transition having an
appreciable dipole strength dna, the surface is in the near field of the dipole (i.e.
|ωnaz/c| � 1) and the electric field is just the gradient of an electrostatic potential.
These results come from perturbation theory taken to order d2 and it is assumed
here that the temperature is low enough to neglect the thermal field.

Because the dispersive contribution to the van der Waals shift (equation (3.2))
is a broad-band non-resonant effect; it is not particularly sensitive to the spectral
features in ε(ω). By contrast, the resonant effects ∆Eresonant and ∆Γ are strongly
enhanced when the dielectric constant at one of the atomic frequencies ε(ωna) has a
value close to −1 because of the denominator ε(ωna)+1 in equations (3.3) and (3.5).
This naturally leads one to wonder what is happening in the material at ε = −1
to produce strong resonant coupling. The answer can be found by considering the
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continuity of Dz, the normal component of the displacement field, across the surface
of the material. Since ε = 1 outside the surface, the condition ε = −1 inside implies
equal but opposite normal electric fields on the two sides of the surface, corresponding
to a distribution of charge on the surface. Thus we can understand the strong effect
at ε(ωna) = −1 as a resonance which occurs when the atomic dipole and the surface
charge both oscillate at the same frequency.

The surface charge is caused by polarization of the medium. In a metal it is the
electron gas that is polarized and the dielectric function can be approximated using
the Drude model by

ε(ω) = 1− ωp

ω(ω + iγ)
, (3.6)

in which ωp is the plasma frequency for the electron gas and γ is a phenomenological
collision rate. The frequency of the surface wave (plasmon) is then just ωs = ωp/

√
2 if

we ignore the damping. For a dielectric slab, we consider that ε(ω) at the frequencies
of interest has a frequency-dependent part due to lattice polarization and a constant
part due to electronic resonances at much higher frequency. In that case, we can
write (Ibach & Lüth 1995)

ε(ω) = ε∞ +
ω2

T(εst − ε∞)
ω2

T − ω2 − iγω
, (3.7)

where εst and ε∞ are constants and ωT is the natural frequency of transverse oscil-
lations in the bulk. Of course ε∞, the high-frequency limit of this formula, is in fact
only an intermediate value associated with the low-frequency wing of higher reso-
nances which we ignore here; ε(ω) must tend really to unity at high frequency. When
the damping is neglected, the frequency of the surface wave (polariton) given by the
condition ε(ωs) = −1 is

ωS = ωT

√
εst + 1
ε∞ + 1

. (3.8)

4. Spontaneous emission near a real surface

It is interesting to note that in the case of a perfect mirror Im[(ε(ωeg)−1)/(ε(ωeg)+
1)] vanishes and according to equation (3.5) the spontaneous decay rate of the atom
is unaffected by the surface. This seems to be at variance with the well-known result
that an atom very close to a perfect reflector radiates either at twice the free space
ratio or not at all, depending on the orientation of the dipole; a result which is
obvious when we consider that the parallel dipole is cancelled by its image and the
perpendicular dipole is doubled. This strong modification of the decay rate is missed
in our near-field approximation because the field interacting with the atomic dipole
is forced by our approximation to be exactly in phase with the dipole and therefore
cannot remove energy from it, even in the limit where z → 0 and the field becomes
infinite. The doubling or vanishing of the decay rate close to a perfect reflector is in
fact a retardation effect; the phase shift may be small but the field is correspondingly
large and therefore causes a substantial alteration of the decay rate. What we see in
equation (3.5) is something different which must be added to the retardation effect.
Now there is a phase shift of the field caused by dissipation in the mirror and this
contribution to the decay rate grows as 1/z3, in proportion to the field, because the
phase angle does not vary with z.
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From another point of view, we can consider this kind of dissipation as a new
decay branch in which the atomic de-excitation is accompanied by the creation of
a surface plasmon or polariton through the Coulomb interaction. The frequency of
the atomic transition does not have to be identical to that of the surface excitation
because of the damping characterized by γ in equations (3.6) and (3.7), but of course
the coupling is strongest when the frequency mismatch is less than γ.

Let us consider an atom in excited state |a〉 close to a slab of material (the mirror).
For simplicity we will suppose that the excited atom is spherical so that the dipole
terms in brackets in equation (3.5) can be written as 4

3 |dna|2. Let us also recall that
the spontaneous emission rate on the |a〉 → |n〉 transition in free space is

γan =
1

4πε0

ω3
an

~c3

4
3
|dna|2. (4.1)

When these substitutions are made in equation (3.5), we are able to write the rate
of decay into surface excitations very simply as

∆Γ =
∑
n

γan

(
δan
z

)3

. (4.2)

The length δan is the distance from the surface where the decay a → (n + surface
excitation) is as rapid as the free-space a→ n transition. It is given by

δan =
λan
2π

3

√
1
4

Im
(
ε(ωan)− 1
ε(ωan) + 1

)
. (4.3)

For an experimental study of this effect we cannot easily position the atoms much
closer to the surface than about 1 µm, so it is natural for us to consider long wave-
length transitions. For example, we have found that the 13S state of caesium is a
suitable candidate with a 13S–12P transition wavelength of 57 µm, a spontaneous
decay rate of Γ0 = 1.3 × 106 s−1 (calculated by Theodosiou 1984) and a partial
rate on the 13S–12P branch of γ0 = 6.4× 104 s−1 (calculated from Edmonds 1979).
Above a gold surface, such as we have used in our previous experiments, the dissi-
pative coupling is characterized by a length δ13S,12P = 160 nm and therefore seems
too weak to measure in our apparatus. Conductors with more loss are better able to
damp the atom, but still the frequency mismatch between the atom and the surface
plasmon suppresses the strength of the dissipative coupling to a metal. By contrast,
the surface polariton frequencies of some ionic crystals are very close to the Cs(13S–
12P) frequency resulting in a much stronger coupling. In figure 5a, we display the
free space decay rates Γ0 and γ0 for a caesium atom in the nS state. We also show
the spontaneous decay rates ∆Γ at a distance of 1 µm from various surfaces, which
we have calculated from equations (4.2) and (4.3) using optical constants given by
Palik (1985, 1991) and reproduced in table 1. The lines indicate the decay rates for
a fictitious caesium atom without fine structure whose principal quantum number
is continuously tuneable. These curves clearly exhibit the resonant behaviour of the
atom–polariton coupling. The dots mark the specific frequencies corresponding to
the fine structure transitions of a real caesium atom. Here we have had to take fine
structure into account because the splitting is comparable with the width of the
polariton, both being of order 200 GHz. There are of course two dots for each princi-
pal quantum number n corresponding to the two fine structure levels in the (n−1)P
state, the one to the left being associated with P1/2. The expected transition rates
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Figure 5. (Left) Polariton induced decay rates of caesium nS states 1 µm above various dielectric
surfaces, calculated from equation (3.5) using the optical constants given in table 1. Γ0: total free
space decay rate, γ0:|nS〉 → |n− 1,P〉 rate. (Right) Corresponding van der Waals energy shifts
calculated from equations (3.2)–(3.4). The two dots for each n correspond to the two (n− 1)P
fine structure levels. Expected decay rates and shifts are suitably weighted averages of the two
values as listed in tables 2 and 3. The resonant behaviour of the atom–polariton coupling is
evident in both graphs. Note that the van der Waals shift can go below the abscissa, indicating
the possibility of a repulsive interaction.

Table 1. Optical constants (defined in equation (3.7)) of various dielectric material

optical constants KCla CdTea KBrb

ωT (cm−1) 140.8 140.7 113.5
γ (cm−1) 5.8 6.6 4.6
ωst 4.3 9.5 4.3
ε∞ 2.2 6.6 2.2

aTaken from Palik 1985
bTaken from Palik 1991

∆Γ in the real atom are averages of these values in which P3/2 has twice the weight
of P1/2. These are listed in table 2. We see that the strongest effect is obtained with
a KCl surface, which damps the 13S state of caesium at a rate of 31×106 s−1, almost
500 times faster than γ0 and more than 20 times Γ0. Smaller but still quite significant
enhancements are found for the 13S atom above CdTe and the 14S atom above Kbr.

5. Energy shift near a real surface

The resonant part of the van der Waals interaction energy ∆Eresonant is given by
equation (3.3). Once again it is convenient to characterize the atom–surface coupling
by a length scale so that equation (3.3) becomes

∆Eresonant = −~
∑
n

γan

(εan
z

)3
, (5.1)

where

εan =
λan
2π

3

√
1
8

Re
(
ε(ωan)− 1
ε(ωan) + 1

)
. (5.2)
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Table 2. Polariton induced decay rates of caesium nS states 1 µm above various dielectric
surfaces, calculated from equation (3.5)

(The optical constants given in table 1 are used. For comparison, we also show the total free
space decay rate Γ0 (taken from Theodosiou 1984) and the partial |n, s〉 → |n − 1, P 〉 rate γ0
(Edmonds 1979).)

polariton induced decay rate free space rate
(106 s−1) (106 s−1)︷ ︸︸ ︷ ︷ ︸︸ ︷

n KCl CdTe KBr total rate Γ0 partial rate γ0

11 0.006 0.001 0.002 2.7 0.227
12 0.10 0.02 0.02 1.8 0.116
13 30.94 3.64 0.62 1.3 0.064
14 0.38 0.24 2.20 0.9 0.038
15 0.21 0.10 0.39 0.7 0.023

Table 3. Van der Waals energy shift of caesium nS states 1 µm above various surfaces,
calculated from equations (3.2)–(3.4)

van der Waals energy shift (MHz)︷ ︸︸ ︷
n KCl CdTe KBr gold surface

11 −0.17 −0.35 −0.18 −0.48
12 −0.17 −0.59 −0.26 −0.81
13 −1.15 −0.41 0.004 −1.31
14 −1.53 −1.76 −2.28 −1.99
15 −1.93 −2.43 −2.09 −2.92

In figure 5b, the lines indicate the van der Waals shifts at a distance of 1 µm for a fic-
titious caesium atom without fine structure whose principal quantum number is con-
tinuously tuneable. These shifts are the sum of the gently varying term ∆Edispersion
given by equation (3.2) and the resonant shift. For n = 13, 14, one clearly sees the
surface polariton resonances of KCl, CdTe and KBr, whereas the shift near a gold
surface is featureless and indistinguishable from that of a perfect conductor. Once
again, the dots in the figure 5b correspond to the two fine structure levels in the
(n− 1)P state and the expected van der Waals shift is the average in which the P3/2
value has twice the weight of P1/2. The values of ∆EvdW are listed in table 3.

The main point to note in figure 5b is that the van der Waals attraction can be
strongly affected by resonance with the surface polariton. There are regions where
it is considerably stronger than the perfect conductor attraction and others where it
is strongly suppressed or even becomes a repulsion, as indicated by a positive shift
in figure 5b. The shifts predicted in our calculation are all attractive except for the
very small positive shift at n = 13 with KBr. However, it may be possible to pull
the frequency of one of these surface polaritons by doping the material, changing its
thickness or structuring the surface in a suitable way. This would open the interesting
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possibility of controlling the atom surface interaction, allowing us to make it strongly
attractive, vanishing or repulsive at will.

6. Thermal effects

According to Fermi’s golden rule, the spontaneous radiation rate is proportional
to the square of the transition matrix element and hence to n̄ + 1, where n̄ is the
mean number of photons per mode at the transition frequency. This number is given
by Bose–Einstein statistics as

n̄(ωan) =
1

exp[~ωan/kT ]− 1
, (6.1)

a formula which applies to the surface polaritons of the last two sections as well as
to the more usual fields of cavity QED. At room temperature, n̄+1 is approximately
1.7 at the frequency of the caesium transition and we can therefore expect the spon-
taneous emission rates to be almost twice as large as we have calculated. Moreover, it
will be possible to vary the thermal enhancement factor between 1.0 at 77 K (liquid
N2 temperature) and 3.0 at 613 K as a way of studying this effect in our laboratory.

In the same way, there should be a thermal enhancement of the resonant inter-
action energy ∆Eresonant allowing us to make this contribution to the total van der
Waals energy up to three times as large as we have shown in figure 5b. By contrast,
the temperature dependence of the non-resonant shift ∆Edispersion is expected to be
relatively weak. The net effect is that it should be possible to achieve a repulsive van
der Waals interaction between a 13S caesium atom and KBr or CdTe surfaces which
could be as large as several MHz and might well be observable in the laboratory.
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